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CIRCULAR CYLINDRICAL SHELLS
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SUMMARY

A number of circular cylindrical shells manufactured of 5052-0 slu-
minum alloy were tested in pure bending, most at a temperature of 500° F,
but a few at room temperature. Fifty-four specimens were unreinforced,
seventeen had longitudinal, fifteen had circumferentisasl, and sixteen had
longitudinal and circumferential reinforcing elements. All the specimens
not subjected to static tests failed by creep buckling. The results of
the experiments are presented in tables and diagrams. A few theoretical
considerations are given in an appendix.

INTRODUCTION

When a structural element is simultaneously subjected to an elevated
temperature and a load, it is observed that the element deforms in the
familiar elastic or elastoplastic manner at first. Further observation
shows, however, that additional deformetions occur which continue with
time even though the load is constant. These time-dependent deforma-
tions are known as creep deformations.

For many types of structural elements, the creep deformations
eventually accelerate and cause a failure which is similar to the elastic
buckling failure that occurs at room tempersture; this type of failure
is known as creep buckling. The interval of time that elapses between
the application of the load and the collapse of the structure is then
known as the critical or buckling time.

The importance of creep research in general is a consequence of the
rapid developments made in high-speed flight in the last decade. It is
now a well-known fact that when an aircraft, missile, or rocket flies
at supersonic speeds its surface is heated by the airstream. One can
imagine that if this heating is applied to the surface for a sufficient
length of time, large portions of the structure will be elevated in tem-
perature. If some of these portions of the structure are simultaneously



stressed, creep effects may become important. Creep may adversely affect
the strength of a structure by changing the stress distribution. Creep
may also cause large deformations of the structure which can render it
unserviceable. For these reasons it is important to the aircraft designer
or structural engineer to have information regarding the creep behavior

of various types of structural materials and structural elements.

The behavior of the simpler types of structural elements such as
beams, columns, and frames has been investigated both theoretically and
experimentally. The present report is concerned with the creep behavior
of a more complex type of structure, a cylindrical shell loaded by end
moments. This problem is of interest to the aeronautical engineer since
it involves a type of structure often found in aircraft.

Experiments were performed on 102 thin-walled circular cylindrical
shells which were subjected to pure moment loadings at elevated tempera-
ture and at room temperature. The primary objective of the experiments
was to determine the influence of changes in the ratic of skin thickness
to cylinder dismeter, and the effect of the number and placement of rein-
forcements on time to failure in creep buckling. The effect of cylinder
length was also briefly investigated. Results of the experiments are
presented in the form of curves and tables. The experimental apparatus
was designed and constructed specifically for this testing program and
it is described in detail in reference 1. A total of 14 different types
of specimens was tested; detalled specifications for each type are listed
in table 1.

A theory for predicting the creep-buckling time of thin circular
cylindrical shells has been developed by Hoff (ref. 2). This theory is
based upon the supposition that the cylinder collapses by flattening.
In order to predict the critical time by use of this theory, it is nec-
essary to solve two simultaneous differential equations numerically.
The appendix to the present report describes a simplification, based on
experimental observations, which enables one to calculate the creep-
buckling time by means of a simple integration. The results of this
simplified method are compared with those from the method of Hoff as
well as with results of experiments in numerical examples.

Determination of the creep-buckling time by either the method of
reference 2 or the simplified method requires first finding the initial
elastic values of curvature of the cylinder axis and the flattening ratio
of the cylinder cross section. A simplification of the method of ref-
erence 2 for calculating these elastic quantities and the effect of
instantaneous inelastic behavior of the material on the creep-buckling
time are also discussed in the appendix.

This report is a summary of the results of an investigation which
has been partially reported in references 1 and 3. The investigation
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SYMBOLS

a cylinder flattening

C,C1,Co simplifying terms, see appendix

d;,dp,d3 deflections of end of cantilever beam; see figure 7

e interaction factor used in calculating elastic curva-
ture and elastic flattening

E Young's modulus

h cylinder well thickness

Iy, he cylinder wall thicknesses effective in resisting
bending and axial extension, respectively

I moment of inertia of cylinder cross section with
respect to the horizontal centroidal axis

Jln’le’JB’J5 constants dependent upon n and p

L,11,1p lengths of deflection-measuring equipment shown in
figure 7

Ly length of cylinder

M bending moment

n,p creep exponents

r radius of cylinder

T parameter dependent upon he, My, and r

t time



t nondimensionalized time parameter, kayt/kg

y distance from neutral axis

a flattening ratio, a/r

T flattening ratio parameter, «/Co

B axial displacement of point of intersection of the axis
with the end plane of the cylinder

3] vertical displacement of point of intersection of the
axis with the end plane of the cylinder

AD change in length of vertical diesmeter of cylinder

€ bending strain

1 ratio of average curvature rate to steady curvature
rate

S rotation of cylinder end plane

K curvature of cylinder saxis

K1 elastic curvature of cylinder axis obtained from simple
beam theory

A creep constant in extension

VTR creep constants in bending

p radius of curvature of cylinder axis

g bending stress

V¥ angle measured from horizontal in plane perpendicular
to axis of cylinder

(.) derivative with respect to time or rate

Subscripts:

av average

cr critical

s
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max maximum

r reduced

s steady

o elastic or initial

TEST APPARATUS AND PROCEDURE

Apparatus

The main parts of the test apparatus were a lever loading mechanism
designed to maintain a constant bending moment on the cylinder (fig. 1),
a rigid support for the cylinder (figs. 2 and 3), and an oven capable
of producing a constant elevated temperature in the cylinder throughout
the range of 150° to 1,000° F within a tolerance of #3° F (figs. 4 to 6).
The pure bending moment applied to the cylinder was the weight suspended
from the apex of the loading triangle multiplied by the distance from
the apex to the pivot in the middle of the base of the triangle (fig. 1)
plus the weight of the loading triangle multiplied by the distance of its

center of gravity from the pivot. The apparatus is described in detail
in reference 1.

Measurement of Temperature

Temperatures were measured at 20 points on the specimen. Iron-
constantan thermocouples were fastened to the specimen with heat-resistant
tape in such a manner as to insure that the junctions remained in close
contact with the surface at all times. The thermocouples were wired to
a selector switch connected to a No. 1117 Brown indicating potentiometer.
The temperatures at the 20 points were read consecutively.

Of the points surveyed, four were at each extreme end of the cylinder,
four at one-quarter length, four halfway between the ends, and four at
three-quarter length. In each of the planes one thermocouple was located
at the top, one at the bottom, and one on each end of the horizontal diam-
eter of the cylinder. The control points for automatic temperature regu-
lation were coincident with the survey points halfway between the ends.



Measurement of Deformations
The deformations measured were:
(1) Rotation of the end plane of the cylinder ©

(2) Vertical displacement of the point of intersection of the axis
of the cylinder with end plane &

(3) Axial displacement of the point of intersection of the axis of
the cylinder with the end plane 8

(4) Change in vertical diameter in a plane perpendicular to the
axis of the cylinder and bisecting the cylinder AD

For measurement of the first three of these deflections, the loading
linkage was used to transmit the motion of points in the end plane of
the cylinder to the outside of the oven where measurements could be made
at room temperature. Measurements were made by using cantilever-beam
transducers and SR-4 Type M indicators; the cylinder deflections were
obtained from the geometry of the system (fig. 7). In each particular
case this was done as follows.

To measure 6, one end of a cantilever beam of length 17 was

clamped in a vertical position to the upright of the castored base plate
that acted as fulcrum for the counterbalancing beam. The other end of
the cantilever was set against the base of the loading triangle. From
the geometry of the linkage it is seen that

dq
1

where dl is the deflection of the end of the cantilever beam.

To determine &, one end of a cantilever beam of length 12 was

clamped in a horizontal position to the upright of the base plate. The
other end of the cantilever was set against the counterbalancing beam.
From the geometry it 1s seen that

& = (L/12>d2 (2)

H &
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where dp 1is the deflection of the end of the cantilever and L 1is the

length of the counterbalancing beam from the fulcrum to the center of the
cylinder end plane.

For determining f, one end of a cantilever beam was bolted to the
supporting structure on which the base plate rests. The other end was
set against the edge of the castored base plate. In this case

B = dz (3)

where d3 is the deflection of the end of the cantilever.

Measurements made in the first few experiments indicated that the
magnitude of B was small compared with that of © and &, and in sub-
sequent tests only the latter two quantities were measured.

The change in diameter in the elevated-temperature tests was meas-
ured by means of a high-temperature linear variable differential trans-
former made by Schaevitz Engineering Co. of Camden, New Jersey. The
stationary transformer coil was suspended from the upper surface inside
the cylinder. A long slender rod was attached to the transformer core
which was placed inside the coil with the end of the rod resting on the
bottom surface of the cylinder, so that the assembly could move freely
in a vertical direction. Relative motion between the core and coil as
a result of the cylinder flattening changed the output of the transformer.
The change in output voltage was calibrated as a measure of change in
diameter. A graphical record of diameter change with time was obtained
with the aid of a Brown "Electronik" recorder made by the Minneapolis-
Honeywell Regulator Co. In one of the room-temperature static tests,
the change in diameter was measured by another means. A dial gage set
in a measuring fixture was used, the fixture being designed so that one
end of the vertical diameter of the cylinder was in contact with the
fixture itself and the other end was in contact with the spring-loaded
plunger of the dial gage. By keeping the cylinder in contact with the
fixture as the load was applied, change in the vertical diameter could
e read on the dial gage.

Many difficulties were encountered in measuring diameter change of
cylinders at elevated temperatures. Calibration of the transformer was
awkward and stabilization of the recorder proved troublesome. Because
of these difficulties, the change in diameter was measured in compara-
tively few experiments and the accuracy of the measurement was not up to
the standard of that of the other deformation measurements.



Specimens

All specimens, both reinforced and unreinforced, were made of
5052-0 aluminum-alloy sheet with thicknesses of 0.032, 0.040, 0.051, or
0.064 inch. The sheet was rolled into a cylinder 16 inches in diameter

and 48 or 38 inches long with a l%-—inch overlap at the end of Jjuncture.

ANL30-ADk rivets spaced 1/2 inch apart closed the cylinder. Longitudinal
reinforcement consisted of extruded bars attached around the circumference
to the inside of the cylindrical shell. These longitudinal stiffeners
were made of solid rectangular 5052-0 aluminum alloy of 1/2- by l/h—inch
cross section with the 1/2-inch side against the sheet. Each stiffener
was riveted to the sheet with ANL30-ADk rivets at 1/2-inch spacing.

Circumferential reinforcement consisted of equally speced rings
along the length of the cylinder. These rings were of 1/2- by 1/Lk-inch
or 1/2- by 1/8-inch rectangular cross section with the 1/2-inch side
against the sheet. The rings were rolled to a 16-inch inside diameter
from extruded 5052-0 or 2024-TL4 stock and fastened to the outside of the
cylinders by sixteen 6-32 steel bolts or by ANK30-ADL rivets at l-inch
spacings.

The decision of which aluminum alloy to use for the specimens was
made on the basis of past experience. Creep experiments at the
Polytechnic Institute of Brooklyn have shown that the material proper-
ties of the 5052-0 alloy, in contrast with those of some aluminum alloys
more commonly used for structures, do not change significantly with
time because of soaking at elevated temperature. It was felt that the
use of an unstable, although structurally more interesting, material
would add an unwanted complication to the investigation at this time.
In one instance, however, 2024-Th extruded stock was used for ring
reinforcements because 5052-0 alloy was not available at the time (see
table 1).

Steel clamping rings with a 16-inch inside diameter, l-inch thick-
ness and 4-inch length, having 1/2— by 2%-—inch flanged ends slipped over

the ends of the cylinder. Two circumferential rows of 5/8-inch-diameter

holes l% and 3 inches from the end of the ring were provided to take

through bolts for drawing 24 knurled-faced convex clamps in two rows
against the inside surface of the cylinder, and in this manner to secure
4 inches of the end of the cylinder within a steel ring at each end.

The unsupported length of the cylinder was then either 40 or 30 inches.

The flanged portion of the rear clamping ring contained a circum-
ferential set of holes which were matched to studs protruding from the
strongback. The ring was secured in place on these studs.

H



H e

The load links and counterbalance beam were attached to a vertical
fitting consisting of two steel bars 1/2 inch by % by 21 inches spaced

l% inches apart and welded to the front face of the front clamping ring

across the entire diameter (fig. 2). The loading links were pinned to
the ends of the fitting by l-inch-diameter hardened steel pins; the
counterbalancing beam was similarly pinned at the midpoint. The center-
to-center spacing of the end holes was 18 inches; the third hole was
exactly halfway between the ends.

Procedure

With the test specimen securely mounted the thermocouples were
attached, the clamping-ring heaters were positioned and connected, and
the oven was rolled into place around the specimen and sealed. The load
links were connected to the lever, and the counterbalancing beam was
pinned and weighted. A hydraulic jack was used to support the end of
the loading lever, and the deadweight load was applied. At this stage,
the entire weight was supported by the jack.

Switches were thrown and full power was fed to all heaters. As the
temperature of the oven increased, a careful check was maintained at
each of the 20 instrumented points. Some points naturally approached
the test temperature more quickly than others. When the test temperature
was reached at these points, the corresponding heaters were cut back to

maintain it. Stabilized test temperature was reached in li hours and was

maintained therefrom wfth a maximum variation of iSO F for the remasinder
of the test.

When the temperature was stabilized, the load was applied. This
was accomplished by opening the metering valve of the hydraulic jack
and allowing the full load to be smoothly transferred from the jack to
the end of the lever. The operation took about 10 seconds. The time
to failure of the cylinder was measured from the instant of full load
application.

In addition to creep-buckling experiments, static-buckling tests
were also performed to obtain the instantaneous failure load of the
specimen. These tests were carried out at both room and elevated tem-
peratures. Load was applied by a hydraulic jack. A dynamometer was
attached to the loading triangle and connected to an indicator. As the
load was increased from zero, the indicator was continuocusly nulled and
the maximum strain reading, corresponding to the buckling load, was noted.
In cold static tests, the load could be increased at a leisurely rate and
nulling the indicator was no problem. In hot static tests, however, it
was necessary to apply load rapidly in order to avoid creep deformations;
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consequently, the nulling proved a problem. For this reason the Brown
"Electronik" recorder was used to measure the buckling loead.

TEST RESULTS

The principal results of the 102 experiments are summarized in
tables 1 and 2. Figure 8 shows plots of applied bending moment versus
critical time for the test cylinders; curves are faired through the
different points. Test results for both the reinforced and unreinforced
cylinders are shown in the figure.

All cylinders tested failed by buckling on the compression side.
Unreinforced cylinders developed multilobed buckles in reasonable approx-
imation to a diamond pattern and with reasonably consistent wave lengths.
Reinforced cylinders, excepting those with only circumferential reinforce-
ment, failed by general instability. Here again, the buckling pattern
was multilobed and generally consistent. Specimens reinforced with
T circumferential rings developed a multilobed pattern but failed due to
panel instability. Specimens with 19 rings developed single intrabay
accordion pleats and failed because of panel instability. Figures 2
and 9 are photographs which are representative of the various types of
failures. Figure 10 presents curves of deflection versus time obtained
from experiments on reinforced and unreinforced cylinders. The slope of
the straight portion of the curve of end rotation versus time was obtained
for each test and designated as 6g. The assumption was made that the

longitudinal axis of the cylinder deflected into a circular arc under
loading so that

=2 (4)

where k was the curvature of the cylinder axis and Ly was the length

of the cylinder. The steady curvature rate corresponding to the steady
end-rotation rate was obtained as:

. )
Kg = L_]S_ (5)

The bending moment was plotted against the steady curvature rate on
a double logarithmic scale (fig. 11) for various types of specimens.
The apparatus for measuring deflections was developed after the 0.06L-inch
unreinforced cylinders had been tested so that it was not possible to

oo
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make a similar plot for this type of specimen. The plots of figure 11
indicated that, for each type of specimen, a straight line could be
passed through the points without an undue amount of scatter. This
implied that the moment was related to the steady curvature rate as

ke = (tfu)® (6)

where M 1is the bending moment and u' and n are constants. The

values of p' and n as determined from figure 11 were collected and
presented in table 3.

Discussion
Figure 8 is a composite plot of bending moment against critical

time for all cylinders tested. From this figure and table 3, the
following general informetion mey be extracted.

Unreinforced cylinders.- The bending moment required to cause creep
buckling at a specified time is increased if the thickness of sheet is
increased. A qualitative idea of the influence of sheet thickness on
required bending mcment is obtained if these quantities are plotted for
different values of the critical time. This cross plot is shown by the
unbroken straight-line portion of the curves in figure 12 and indicates
that, within the range of sheet thicknesses tested, the bending moment

is prcportional to the sheet thickness for a given value of the critical
time.

Longitudinally reinforced cylinders.- Figure 8 shows that the addi-
tion of longitudinal reinforcing elements materially increases the creep
buckling strength of the basic shell. This can be seen by comparing the
curves marked C and G (representing two types of longitudinally rein-
forced specimens) with the curve of the 0.051-inch-thick basic shell.

One may obtain an idea of the increase in strength, relative to an unrein-
forced cylinder, if use is made of the concept of effective thickness.

One imagines that the total stringer cross-sectionsl area is spread over
the entire circumference of the shell and the resulting thickness is added
to the sheet thickness; in the case of types C and G specimens, the
effective thicknesses are 0.091 and 0.081 inch, respectively. The bending
moments required to cause creep buckling at specified values of the crit-
ical time are obtained from the C and G curves of figure 8 and are plotted
in figure 12. By extrapolating the curves of figure 12 it is seen that
for a given critical time the bending moment required to buckle an unrein-
forced cylinder of 0.091- or 0.08l-inch thickness is greater than that
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required to buckle a longitudinally reinforced cylinder of a corre-
sponding effective thickness. This limited evidence may be taken to
imply that for a given cross-sectional area, or for a given weight of
structure, an unreinforced cylinder is stronger in creep bending than a
longitudinally reinforced cylinder. It should be stressed that this
conclusion is merely tentative as it 1s based on test results obtained
from only two series of longitudinally reinforced cylinders. It should
further be noted that the type of stringer cross section used in the
test is an inefficient one and that the use of a more efficient type

of stringer might lead to different results.

Circumferentially reinforced cylinders.- Specimens reinforced with
rings alcne, even at very close spacing, were no stronger in bending
than those without rings. This may be seen in figure 8, where the test
points for the ring-reinforced specimens of types H and I plot within
the scatter band of the 0.051-inch unreinforced series. These tests
covered only two isolated possibilities of combinations of ring spacing
and cross section, but it seems reasonable to surmise that circumfer-
ential reinforcement in any case would be inefficient in the presence
of moment loading.

Circumferentially and longitudinally reinforced cylinders.- When
rings act in combination with stringers, the strength of the cylinder
is increased over that obtained with only stringer reinforcement. This
mey be seen in figure 8 by comparing curves G and J with curves C and F.
While adding rings to a longitudinally reinforced cylinder dces increase
the strength, it does so at a disproportionate increase in weight.

Effect of length.- There appears to be no distinct influence of
length on buckling strength in the range of these tests. Experimental
points for unreinforced cylinders of 0.051-inch sheet thickness and both
4LO- and 30-inch lengths all fall within the scatter band for both series.
It should be noted, however, that the lengths considered are not signif-
icantly different.

The effect of length on the creep constants defined by equation (6)
may be seen in figure 11(b), where a single straight line may be passed
through test points for both 30- and 40-inch lengths without an undue
amount of scatter. This line yields a value for n of 5.0 as compared
to the value 5.8, which is obtained by considering only the 40-inch-
length test points. This then strengthens the conclusion that the effect
of length on the creep prcperties is unimportant in this length range.

It should also be noted that the test points for the specimens reinforced
with type I rings in figure 11(b) fall within the scatter band of the
0.051-inch unreinforced series. This again seems to indicate that the
addition of rings does not change the creep properties of the basic shell.

o
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Effect of sheet thickness.- Table 3 shows that unreinforced cylinders
with sheets of the same material but of different thicknesses have widely
varying values of n. There are several possible explanations for this
difference; for example, the assumption that equation (6) can adequately
describe the creep behavior may not be valid. Other reasons may lie in
the differences between the batches from which the sheets were manufac-
tured, in the manufacturing processes the sheets underwent before delivery
to the laboratory, and in the amount of coldwork to which they were
subjected in the laboratory when cylindrical shells were made from the
flat sheet. Certainly the forming operation was more severe for the
0.06k-inch sheet than for the 0.032-inch sheet when both were rolled
into cylinders of the same radius.

The values of n in table 3 for the reinforced and the 0.051-inch
unreinforced cylinders are, with one exception, all between 5.0 and 5.3.
This exception, the value 5.8, was obtained on the basis of a compara-
tively few tests and further testing showed that the value 5.0 was more
appropriate. Since the reinforced cylinders were made from a 0.051l-inch
shell, this observation seems to indicate that, within experimental
accuracy and for the range of reinforcement areas and the special cross-
sectional shape of reinforcement considered, the creep exponent depends
only on the sheet thickness and not on the reinforcements.

Change in vertical diameter.- The change in vertical diameter of
the middle cross section of the cylinder was measured in order to verify
experimentally Hoff's theory for creep buckling (ref. 1), which supposes
that the cylinder collapses by flattening. This quantity was measured
successfully with a linear differential transformer in three experiments,
two on unreinforced and one on reinforced cylinders. These were the
specimens in table 2 numbered 24, 25, and 55 and the maximum values of
the ratio of flattening (see fig. 13) to radius were 0.002, 0.004, and
0.004, respectively. These values are very much smaller than the values
predicted by use of Hoff's theory. This observation, combined with the
fact that none of the buckled specimens showed any appreciable amount of
flattening, indicates that collapse by flattening is not the mechanism
for failure in creep. It is possible, however, that the flattening
triggers the collapse in another mode. Perhaps the rigid end fittings
on the specimens prevented the cylinder from flattening according to
theory or possibly the measurements were not taken at the cross section
where the flattening was greatest. As mentioned before, difficulties
were encountered in measuring the change in diameter and the reliability
of the results is open to question. Finally, because the construction
of the oven did not permit visual observation of the specimens during a
test, the exact nature of the development of the failures is not known.

Polytechnic Institute of Brooklyn,
Brooklyn, N.Y., October 15, 1958.
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APPENDIX
SIMPLIFIED METHOD FOR CALCULATING CREEP-BUCKLING TIME

Simplification of Hoff's Method

The method proposed by Hoff in reference 2 for calculating the
creep-buckling time or critical time of cylinders loaded by end moments
involves the numerical integration of two simultaneous differential equa-
tions. The critical time can be found to any desired degree of accuracy
by taking small enough increments of time in the integration; however,
this procedure is very time-consuming and for this reason it would be
desirable to simplify the process for calculating the creep-buckling
time. This section describes such & simplified method for calculating
the critical time. The method is applied to predict values of the creep-
buckling time of cylinders similar to those used in the experiments;
results are compared with those obtained using the numerical integration
and with experiments.

The results of the experiments described in the body of the report
show that the rate of change of curvature of the cylinder axis is con-
stant during a portion of the time between load application and failure.
This can be seen, for instance, in figure 10, where the rotation of the
end plane 6 1is proportional to the curvature. If the applied bending
moment is substantially below that which causes immediate failure of
the cylinder, the curvature rate is constant during a very large portion
of the time between load application and failure. This indicates that
it 1is reasonable to take the curvature rate as being constant as a
rational means of simplifying Hoff's equations, at least when the ratio
of creep-buckling moment to static-buckling moment is not close to unity.
Thus, instead of the curvature rate k varying with time, it will be
assumed that Kk has a constant value kav which is some average of
those curvature rates actually attained during the time period from losad
application to failure. The plots of 6 versus time show that the
slope of the curve (which is proportional to the curvature rate) at any
point is everywhere greater than or equal to the slope of the straight-
line portion of the curve. The constant curvature rate in any experi-
ment 1s then also a minimum curvature rate and one may write for the
above-mentioned average curvature rate

kav = ﬂks (7

H e
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where 7 1is a multiplier greater than or equal to 1 and ks is the

steady, constant, or minimum curvature rate. For a particular cylinder
and a particular moment, kg may be found from the empirical relation

Kg = (M/H' )n

Values for n and u' have been determined in an earlier
report for the cylinders which were used as test specimens.
ture can be expressed as

kK = Kg + Kgyt

if the curvature rate is constant. In this equation, kg

ture due to the elastic deformation of the cylinder as the
applied.

(6)

part of the
The curva-

(8)

is the curva-
load is

The equations of Hoff (egs. (57) and (58) of ref. 2) which are to

be simplified are

(et - (1e/nex2nay )

1 - (E—£—£>(a/r)[} + " i l(K/k)(é/aE](J5/Jln>

R YL YR ET

1 - (1/n)(a/r)[1 + (s/3)(4/a)] (J5/J3)

1.1 ; l(a/r)[} * = i l(n/k)(é/ai’(JB/Jl

where r is the cylinder radius, a is the flattening (se

(9)
(10)
y
e fig. 13),

he 1is the effective sheet thickness in the axial direction, n and A

are creep constants for the axial deformations, p and u
constants for the circumferential deformations, and Jj.,

and J5 are constants dependent upon n and p.

are creep
le, J5 E]
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Substitution of kgy for k in equation (9) and subsequent manipu-
lations lead to

(a/x) Aner2Jy  (fgyr yL/n \Jln

1 1 - M _n+ 1/J3 [ i l(n/kav)(é/aﬂ (11)

One can set the second term in the brackets on the left-hand side of
equation (11) equal to a constant or

M

= C (12)

l/n

?\heerln( Iz‘.avr )

Use of equation (12) in equation (11) and further mesnipulations result
in

(k/kav)(4/a) = (f7">(l 2¢) - (n+1) (13)

Comparison of equations (9) and (12) shows that

l—<n+l>a/r[

Substitution of (k/kgy)(&d/a) from equation (13) into the numerator of

1 l(K/.;av)(é/aﬂ (JB/Jln) =C (14)

equation (10) and introduction of equation (14) into the denominator of
equation (10) results in

p+l 295 Jin Js(

e, P g Lrys ooy
(2) = (l) _3 Mﬁ +1/p 5 5 5 (15)
r 5) \Tig c
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Equation (15) is of the form

(a0/at)/® = cre(cp + a) (16)

where

p+l
ey B 95 \1\[35\ (uel/P
R w7 s
1n“1p 3 H
Jy.3
Cp = <J5/J5> 1+ ln25(1 - ¢)

Use of the value of & from equation (8) in equation (16) results in

ax/(1 + @) = coPlc P + E)P(nopﬂ/kav) at (17)
where
a = afCo
t = kayt/no

The region of integration for equation (17) is to extend over the period
from load application to failure. Then @ is to be integrated between
the limits a, and Q.. where a, is the nondimensionalized initial

or elastic flattening and ocy 1is the nondimensionalized flattening at

which the cylinder, for all practical purposes, has failed. The latter
value will be obtained from the criterion for failure used in reference 2,
(a/r)Cr = 0.20. The limits of integration on t will be from zero to

ter, the nondimensionalized time parameter corresponding to failure.
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Upon integration equation (17) becomes

K — \ptl
<p+1> lav : 1 . 1 l+l=(l+tcr) (18)
1l - + - ~ - — \P-
P nop ClpC2p (l + qcr)p (l + ao)p
or
. 1/(p+1)

- + 1 Kav 1 1

ter = (i - n> PCp— o1 - o1 + 1 -1

kot C1FCo (1 + “cr) (l + “o)

(19)

When the ratioc of moment to static-buckling moment is much less than 1,
the experiments showed that the average value of the curvature is not
much greater than the constant value. Then for an applied bending moment
much less than the static-buckling moment, one may use the approximation
that 1 =1 and equation (7) becomes

’;&V = };’.S (20)

where kg 1is obtained from equation (6). Now if the equilibrium of a
cross section of the cylinder is considered, there results

n/2
M=k \/ﬁ orchg cos ¥ Ay (21)
0

The creep law of the material is given by

o = el/m, (22)

e
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The condition that plane sections of the cylinder remain plane during
bending is

€ = Kr cos V¥ (23)

Insertion of the value of € from equation (23) into equation (22), use

of the resulting expression in equation (21), and some manipulations
result in

A = M (24)

Jlnherg(rks)l/n

Use of equation (20) in equation (2L4) and comparison with equation (12)
shows that C = 1 when one assumes 17 = 1. The equations for Cj

and Cp then reduce to

¢ = (175 (% /le)(M/u)rl/ P (25)

Co = JB/J5 (26)

Because of equations (6), (25), and (26), equation (17) can be written
as

—

P
p+tl
R (R AT AN EA MR N
( cr) l1-p rJ5 J3 Ko n

(1)
L

[/ p-1 p-1
P T
L} + Qop L+ ag
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Equation (27) may be used to calculate the creep-buckling time of
reinforced cylinders. The equation can be simplified for the case of
unreinforced cylinders. In this case n =p, h = he = hy, and the

relation between g and A is

.= (1/2)(2n+l)/n[%n/(2n . li]%h(2n+l)/n (28)

If equation (6) is considered, equation (24) can be written as

w = 7, no(2ar)/n (29)

Use of equations (28) and (29) in equation (27) results in

J’ ~N 1/(n+1)
Ecr =< i [‘ L - L + 1 -1 (30)

where

n

n+ 1\, \n+1/93 291n on+l

P, o= [T = N | I A
1 <1 - n>(5) Js J5h(2n + 1) (n/2)

In all the numerical examples subsequently worked with this method,
it was assumed that 7 =1 so that equations (27) and (30) could be
used for calculating the critical times of reinforced and unreinforced
cylinders, respectively.

e
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Calculation of the critical time is then carried out in the
following manner:

(1) The creep constants n, p, W, and p' are obtained from
experiments and the quantities JB’ J5, Jyp, and le are

calculated

(2) From an elastic or an elastroplastic analysis, &, and
%o = (1/Co)(a/r) are obtained (the next section discusses
this calculation)

(3) Equation (27) or (30) is used to determine ter

(4) Finally, with kaz from equation (6), the critical time is
obtained from T = Kgyt/wg

This simplification of Hoff's method was used to calculate the
creep-buckling times of the cylinders used in the experiments. Enough
examples were calculated so that it was possible to draw curves of
bending moment against critical time for each type of cylinder tested.
These curves are shown in figure 1k4.

Elastic Flattening and Elastic Curvature

The initial or elastic values of the flattening and curvature are
needed to calculate the critical time if one uses either the method of
reference 2 or the simplification of this method developed in the previous
section. These elastic quantities can be found directly from the following
equations derived by Hoff in reference 2:

M
Exrlhe[l - (3/2)(a/r)]

K

(31)

and

(3/2)T(rk)?
1+ (5/6)T(rn)2

M = Exrdhgk|l - (32)
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where T = (he/hp)(r/my)° and Iy, 1is the effective thickness of sheet

that resists circumferential deformations. The calculations, however,
involve the solution of a cubic equation (eq. (32)) and present prac-
tical difficulties. A perturbation methcd will now be derived to simplify
the calculation of the elastic deformations.

The assumption is made that the elastic curvature k5 may be
written as:

ko = k(1 + e) (33)

where Kk, = M/EI and e 1is a small number representing the correction

to simple beam theory which 1s necessary in the case of a thin-walled
cross section. Substitution of kg5 from equation (33) into equa-

tion (32) and neglection of powers of e higher than the second lead
to the quadratic

2rp2 - 3

nlgTr

llnl

e? + (2/17) e + (9/17) = 0 (34)

2

Manipuletion of equation (31) and consideration of equation (33) results
in an expression for the elastic flattening ratio (a/r), which is

(/) = (2/3)[e/(1 + &) (35)

The elastic curvature and flattening ratio can then be obtained by first
solving equation (34) for e and then using this value of e 1in equa-
tions (32) and (35) to compute ko, and (a/r),. This procedure was used
to calculate the elastic quantities for the integrations described in the
previous section.

The accuracy of both the above method and Hoff's method for calcu-
lating elastic flattening and curvature was investigated by means of
numerical examples. Results obtained using these approximate methods
were compared with the results obtained by an exact solution of equa-
tions (31) and (32). Unreinforced cylinders of 0.040-inch thickness and
loaded by end moments in the range from 30,200 to 51,800 inch-pounds
were used in the numerical examples. 1In this range of loads it was

— e
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found that the values of the elastic curvature as calculated by the
three methods were all within 1 percent of one another. However, the
values of the elastic flattening ratio as calculated by the pertubation
method were found to be lower and the values as calculated by Hoff's
method were found to be higher than the exact values. For a moment of
51,800 inch-pounds, the former method gave a value 7 percent too high,
while the latter gave a value 5 percent toc low; the differences were
less for lower loads.

The results of the examples using both the numerical integration
and the simplified integration to calculate the critical time show that
the values of flattening and curvature at failure are of the order of
10 times the elastic values. For creep-buckling problems, then, it is
probably immaterial which of the three methods discussed is used to cal-
culate the elastic flattening and curvature because a small error in
initial values will not affect the critical time very much.

If it is desired to obtain a plot of moment versus flattening for
an elastic-buckling problem, equations (31) and (32) should probably be
used to calculate the flattening. The reason for using the exact solu-
tion is that the approximate methods seem to yield values for the flat-
tening that diverge from the exact values as the load approaches the
buckling load.

Effect of Plastic Deformations on Critical Time

A possible reason for the discrepancy between theoretical and
experimental values of the critical time at high loads is that the
material in some parts of the cylinder has exceeded the proportional
1imit, with the consequence that Young's modulus no longer defines the
stress-strain relation. If this is true, Young's modulus must be
replaced by a reduced modulus in the calculation of the critical time.
The resulting decrease in bending rigidity will cause larger initial
deformations and thus hasten the onset of buckling.

As an example, the case of a 0.040-inch cylinder loaded with a
54,400-1inch~-pound moment (test 24) was considered. The experimental
critical time for this cylinder was 3 minutes while the simplified
theory predicted a critical time of 29 minutes. Using the My/I rela-
tion it would be found that oy, = (c)y=r = 6,770 psi. A stress-strain

curve for the material at the temperature of the test, as obtained in a
private communication from Mr. E. C. Hartmann of the Aluminum Co. of
America, shows that the proportional limit is about 3,000 psi, so that
a calculation of the reduced modulus is necessary.
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It will be assumed that plane sections of the cylinder before
bending remain plane after bending, so that

e =y/o (3%6)

where y is the distance from the neutral axis, p 1s the radius of
curvature of the neutral axis, and € is the axlal strain. Because of
this proportionality between € and y, the stress distribution at a
section has the same shape as part of the stress-strain curve. Thus if
the stress (c)y=r on the extreme fiber is known, the stress distribu-

tion of figure 15(3) is determined from the stress-strain curve of the
material (fig. 16). The stress (U)y=r will be determined by the con-

sideration that the moment of the stresses at a section must equal the
applied moment. This can be written as

M = (4h)Zoyr AV (37)

where the sumation is taken over the section shown in figure 15(b).

The correct stress distribution is then found by a trial-and-error
procedure as follows:

(1) Assume a value of (o) in figure 16. This determines the

y=r
distribution of ¢ in figure 15(a).

(2) Calculate M from equation (37). If this value does not agree
with the original moment, choose another (0)y=r and recal-
culate M until it is in agreement with the original value.

This procedure was carried out for the example mentioned above and

it was found that (0)y=r = 6,100 psi. The strain corresponding to this

stress from figure 16 is (e)y=r = 0.00122 inch per inch. With this

value of € and with y = r, one obtains from equation (36)
p = 6,560 inches. From the equation

Er = Mp/I (38)

I~ Py
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a value was obtained for
E. = 5.6 x 100 psi

as compared with the value E = 8 X lO6 psi wused in the calculations.

This value of E, can be used for calculating the initial deflec-
tions and the critical time. When this was done it was found that

(1) The initial flattening ratio (a/r), was increased by a fac-
tor of 2.1.

(2) The initial curvature k. was increased by a factor of 1.7.

(3) The critical time t., was decreased from 29 minutes to
24 minutes.

Thus 1t appears that the inclusion of initial inelastic behavior in
the theory cannot alone explain the discrepancies between theory and
experiment for critical time at high loads.

Discussion

In figure 14, the values of the critical time obtained from the
experiments are compared with the values predicted by use of Hoff's
theory and by use of the simplified version of this theory. The agree-
ment between the results from the two theories is seen to be close for
all types of specimens coumpared.

The agreement between the results of theory and experiment for the
unreinforced specimens is good at comparatively low values of the load
but poor at high values of the load. For the ring-reinforced specimens,
the agreement is seen to be very poor. The critical times were calculated
only for the type I series since the necessary creep data were not avail-
able for the type H series, but it is felt that a similar result would
have been obtained for the latter. It should be noted, however, that, in
the case of the ring-reinforced specimens, the failures were due to local
instability although the theory is based upon the assumption of a general
instability. The lcngitudinally reinforced cylinders give reasonably
good agreement between theory and experiment throughout the entire range
of loads. For the longitudinally and circumferentially reinforced cyl-
inders, the agreement is excellent for the type F and very poor for the
type J specimens. This difference in behavior probably arises from the
fact that the former had rings of greater flexibility than the latter.
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This behavior plus the poor agreement in the case of just ring reinforce-
ments leads one to the conclusion that the theory overestimates the
increase in buckling strength due to the presence of rings.

In general, applications of the theory give values for the critical
time that are unconservative. The shape of the curve of moment versus
critical time is such that the prediction of the critical time for a
given moment can be in great error for comparatively low values of the
moment. The prediction of the moment that will cause failure in & given
time, however, will probably result in a smaller error. Use of the
theoretical curve in the range near the instantaneous buckling load is
not recommended as the experiments have shown a large amount of scatter
in this region.

The values of n = 5.8 and u' = 431,000 were used to calculate
the critical times for the 0.051l-inch unreinforced cylinders instead of
the values n = 5.0 and u' = 577,000 which were later determined to
be more appropriate when the 30-inch-cylinder test points were considered.
The latter values were used in one example to determine how the critical
time would be changed if these values were used in the calculations. It
was found that for cylinder 20 the critical time, as calculated by the
numerical integration, was reduced from 205 to 175 minutes. The experi-
mental value of the critical time for this cylinder was 130 minutes so
that the use of n = 5.0 and u' = 577,000 should increase the agree-
ment between theory and experiment for this type of specimen. This also
illustrates the need for an accurate determination of the creep constants
from the experimental data in order to predict the creep-buckling time.

In the calculations of the critical times for the various types of
specimens, it was found that the use of the simplified method enabled one
to obtain a curve of moment versus critical time in approximately one-
quarter of the time needed to obtain a similar curve by use of the numer-
ical integration. Since figure 14 shows that the results obtained by
the two methods are almost identical, the use of the simplified method
seems Justified in calculating the critical time.

It is instructive to compare the variation of curvature with time
during a test as obtained from use of the two theories and from the
experimental measurements. The comparison is made for a test (test 31)
in which the predicted and experimental values of critical time were
almost identical (see table 2 and fig. 14(a)). The curves are shown in
figure 17, and it is seen that the agreement between all three curves is
very good for the majority of the test period. The curves show that, in
this case at least, the assumption made in the simplified theory as to
the constancy of the curvature rate is valid and leads to excellent
results in predicting the critical time.

HEH
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The criterion for failure was that when the flattening ratio reached
a value of 0.20 the cylinder was considered to have failed. This cri-
terion was used by Hoff in reference 2 and perhaps was chosen on the
basis of the result of Brazier's work on elastic buckling, which showed
that a cylinder became unstable when the flattening ratio attained a
value of 2/9 or 0.22. The effect of the somewhat arbitrary choice of
the critical flattening ratio on the critical time was investigated by
means of an example. Critical times for the cylinder of test 38 were
calculated by using critical flattening ratios of 0.10, 0.20, and o
in the simplified integration. The results of this example are summarized
below; for comparison, the corresponding experimental value was
92 minutes.

@cr tcr 3’ min
0.10 [
.20 88

o 118
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TABLE 2.- CRITICAL TIMES

Cylinder Thiikness R Temperature, f;ggiff Time to failure,
n. min
in-1b
1 0.064 Room 186,400 Statilc
2 064 500 115,000 Static
3 .06k 500 114,600 0.4
in .06k 500 100,000 12.5
5 .06k 500 90,100 26.5
6 .064 500 80,000 39.1
7 .06k 500 75,000 64
8 .06k 500 70,000 105
9 064 500 65,200 109
10 064 500 65,000 130
11 .06k 500 63,500 166
12 064 500 62,000 249
13 .06k 500 60,500 2%3
1k o 500 55,100 321
15 .051 500 114,100 Static
16 .051 500 86,800 1.0
17 .051 500 62,700 14
18 .051 500 59,400 52
19 .051 500 54,000 86
20 .051 500 48,600 130
21 .0k0 500 75,200 Static
22 .040 500 8,500 Static
23 .0ko 500 70,600 Static
2k .0ho0 500 54,400 3
25 .040 500 51,800 11
26 L0ko 500 49,100 37
27 .040 500 Ly 800 29
28 L040 500 4k 800 4o
29 .ol;o 500 ui,go 75
30 .040 500 34,600 178
31 .040 500 30,200 370
32 .032 Room 52,100 Static
33 .032 500 L3 700 Static
3L .032 500 48,600 Statlc
35 .032 500 52,300 Static
36 .032 500 37,800 7
37 .032 500 32,400 69
25 o0 500 77500 136
4o .032 500 24,600 269
41 .032 500 21,600 288
4o .032 500 20,500 khg
43 .032 500 46,200 Static
Ly .05L 500 119,500 Static
45 .051 500 119,100 Static
tg .051 500 96,300 2.7
.051 500 75,200 19.2
48 .051 500 75,200 24,8
L9 .051 500 62,600 33.5
50 .051 500 52,900 Lk.5
51 .051 500 50,400 145.0

1 2 L1
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TABLE 2.~ CRITICAL TIMES - Concluded

Cylinder Thi;rlfness, Temperature, f;i:iﬁf Time tgi iailu.re R
: in-1b
52 0.051 500 43 200 105
53 .051 500 37,000 717.8
54 .032 Room 93,700 Static
55 .032 500 51,600 11.2
56 .032 500 L6,200 28.2
57 .05L 500 189,600 Static
58 .05L 500 113,500 18.3
59 .051 500 93,900 5T .4
60 .051 500 88,700 118.7
61 .051 500 84,800 140
62 .051 500 72,100 209
63 .051 500 113,500 7
64 .051 500 113,500 ki 5
65 .05L 500 176,500 Static
66 .051 500 170,000 5.2
67 .05L 500 129,600 27
68 .05L 500 118, 800 55
69 .051 500 108,000 95
70 .051 500 102,600 100
71 .051 500 99,900 159
72 .051 500 95,000 155
73 051 Room 209,400 Statie
T4 .051 Room 117,500 Static
75 .051 Room 120,200 Static
76 .051 500 108,400 Static
7 .051 500 181,000 Static
78 .051 500 46,000 166
79 051 Room 109,500 Static
80 .051 500 43,000 329
81 .051 500 55, 000 77
82 .051 500 100,000 32
83 .051 500 70,000 21.5
8k .051 500 70,100 152
85 .051 500 80,000 .5
86 .051 500 67,500 131
87 .051 500 67,500 156.5
88 .051 Room 123,700 Static
89 .051 500 80,000 6.8
90 L051 500 k9,000 115
91 .051 500 45,000 318.5
92 .051 500 k7,000 ko
93 .051 500 50,000 128
e .051 500 46,000
95 .051 500 112,400 © Static
96 .051 500 174,700 Static
97 .051 500 62,700 402
98 .051 500 127,000 8
99 .051 500 100,000 60
100 .051 500 80, 000 123
101 .051 500 80,000 296
102 .051 500 90, 000 95.5

88pecimen was of 5052-H34 aluminum alloy; test terminated after

380 minutes without failure.
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L-57-2547

Figure 2.- Specimen after failure showing attachment to loading ring.
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Figure 3.- Strongback attachment cylinder.

L-57-2548
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W-141

(a) Type I, experiment 92.

(b) Type C, experiment 58.

L-60-276

. Figure 9.- Photographs of specimens after failure.
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(d) Internal view of type F, experiment Tl.

Figure 9.- Concluded.

L-60-277
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(a) Unreinforced cylinder of 0.051-inch thickness (test 17).

END DEFLECTION d,IN.

END DEFLECTION 4, IN.
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(b) Reinforced cylinder of type C (test 58).

Figure 10.- Creep curves for two types of cylinders.
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Figure 11.- Determination of creep constants.
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Figure 13.- Flattening of cross section.
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(a) Stress distribution. (b) Geometry.

Figure 15.~- Cylinder cross section.
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Figure 16.- Stress-strain curve of sheet material.
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